MATH4030 Differential Geometry, 2017-18
Solutions to Midterm

Q1. Let a: (—1,1) — R3 be the space curve given by
1 1 1
a(s) = (G+ 2 50 -2 ).
(a) Show that the curve a(s) is parametrized by arc length.

Solution: Differentiating a(s) w.r.t. s, we have

sy = (L ooz L g2 L
(s) <2(1+) —5(1=5) \/§>

Therefore, the length is

1 1
1o/ (s)]| = \/4(1 +s)+ 1(1 —5)+ 5= L.
Hence, « is parametrized by arc length.
(b) Compute the curvature k(s) and torsion 7(s) of the curve af(s).

Solution: Since « is p.b.a.l., we have the unit tangent vector

T(s) = o/(s) = (;(1 + )12, —%(1 _ )12, \}§> .

Differentiating once w.r.t. s, we obtain
1 1
T/(S) = (4(1 + 5)71/2, 1(1 — 8)71/2, 0) .

Therefore, the curvature is

) = 1T = 35097 =9t =

Note that k(s) > 0 for all s € (—1,1). The unit normal is

N(s) = k(ls)T/(S) = <\}§(1 — )12, \2(1 + 3)1/2,0> .

The binormal is then given by

B(s) =T(s) x N(s) = (—;(1 +5)1/2, %(1 —5)1/2, é) :

Differentiating w.r.t. s,

B(s) = <—1(1 + s)_l/z,—%(l - s)—1/2,0> .

Therefore, the torsion is given by

, 1 1-—s 1+ s 1
(5) = (6. N () =~ (\/1+5+\/15> e




Q2. Let a = a(s) : R — R? be a plane curve p.b.a.l. such that all the tangent lines of a pass
through a fixed point p, € R?. Show that o must be a straight line passing through
the point py.

Solution: By assumption, there exists a smooth function f(s): R — R such that
a(s) + f(s)d/(s) =p, forall s €R.
Differentiating the above identity w.r.t. s,
o/(s) + f'(s)a’(s) + f(s)a(s) = 0.

As « is p.b.al, T(s) = o/(s) and Frenet’s equation gives o(s) = T'(s) = k(s)N(s).
Therefore, we have
(L+ f'(s)T(s) + f(s)k(s)N(s) = 0.

Since {T'(s), N(s)} is an orthonormal basis at each s, we have
1+ f(s)=0 and f(s)k(s)=0.

The first equations implies that f(s) = —s + C for some constant C' € R. Plug it
into the second equation and by continuity of k(s) we must have k(s) = 0. By the
fundamental theorem of plane curve, a(s) must be a straight line. Since the tangent
lines of a straight line agree the line itself, a(s) must also pass through the point py.

Q3. Let o : I — R? be a regular plane curve described in polar coordinates by r = 7(6), i.e.
a(f) = (r(0) cosf,r(0)sinh), 0el.
(a) Show that for any [a,b] C I, L2(a) = ff Vr(0)2 +1'(0)2 db.
Solution: Differentiating «(0) w.r.t. 6, we have
QK@:(HWM%H—T@ﬁmaHWNm9+M@aB®.
Therefore, the length squared is given by

o/ (0)|1> = (r'(8) cos 8 — r(#) sin 8)% + (' (0) sin 6 + r(8) cos 6)?
=7'(0)% 4+ r(0)°.

By definition of arc length, we have

b b
Lhe) = [ la'@) do == [ V@2 ) do.

(b) Show that the curvature at 6 € I is given by

21/(6)% — r(8)r" (6) + 1(0)?

0= @ o




Hint: Recall that the curvature of a plane curve B(t) not necessarily parametrized
by arc length is given by the formula

 det(B(), B(1))
"= EmE

Solution: See Problem Set 2.

Suppose there exists 6y € I such that r(6y) > r(f) for all & € I. Prove that
k(6y) > 0.

Solution: Since 6y is a maximal of the function (), we have
" (0p) =0 and "(6y) <O0.

Combining this with the result in (b), and that r(6) > 0 by definition of polar
coordinates, we have

r(60)% — 7(60)r" (60) >0,

O R

Q4. Let S C R3? be a surface and py € S. Suppose a € S? is a unit vector perpendicular
to T,,5 and let P be the plane through py perpendicular to a. Define the function
f:S—=R3by

(a)

f(p) =p—{p—po, a)a.
Show that f(S) C P and f: S — P is a smooth map between surfaces.

Solution: To check that f(S) C P, pick any p € S, we want to show that
(f(p) — po,a) =0, i.e. f(p) € P ={qe€R3:(q—po,a)=0}. Since a is a unit
vector,

(f(p) = po,a) = (p — po,a) — (p — po,a) = 0.
This proves f(S) C P. To see that f: S — P is a smooth map between surfaces,
we just observe that f is a well-defined smooth function for all p € R3, hence its
restriction to .S is a smooth map.

Compute the differential dfp, : Tp, S — Ty P =T, S.

Solution: Note that T},,S = {v € R3 : (v,a) = 0} = T, P. Take any v € T, 5,
there exists a smooth curve «(s) : (—e¢,€) — S such that «(0) = pp and /(0) = v.
By the definition of differential, we have

) = G| (o)~ (0(0) - o a)a)
=a/(0) — (/(0),a)a
=v—(v,a)a

The last equality follows from the fact that v L a by the definition of 7},,.S and a.
Therefore, dfy, : Tp,S — Tp, P = T, S is the identity map on T}, S.



()

Prove that S is locally a graph over the plane P near py.

Solution: Notice that f is the orthogonal projection onto the plane P. As df,
is the identity map on T},,S, which is clearly a linear isomorphism, by Inverse
Function Theorem , f : S — P is a local diffeomorphism near pg. The inverse of
such a local diffeomorphism that gives .S as a graph over P locally near pq.

Q5. Let S C R? be the half-cone given by

(a)

S :={(z,y,2) € R3: 22 +4% =22 2> 0}.
Show that S is a regular surface.

Solution:

Let F : R3\ {z < 0} — R be the smooth function defined by F(x,y,z) = 22 +
y? — z2. Then we have

VFE(z,y,z) = (2z,2y, —22).

Note that VF = 0 only when (z,y,z) = 0, which does not lie on the surfaces S
(as z > 0). Therefore, we have S = F~1(0) is the level set of a regular value of F,
hence must be a regular surface.

Show that X (u,v) = (ucosv, usinv, u) where (u,v) € (0,00)x (0, 27) is a parametriza-
tion of S.

Solution: Note first that (ucosv)? + (usinv)? = u?, hence X (u,v) € S for all
(u,v) € (0,00) x (0,27). It is clear that X is smooth. Moreover,

Xy = (cosv,sinv,1)  and X, = (—usinv,ucosv,0),

which are linearly independent everywhere (for example, by comparing the z-
component). It remains to check that X is bijective onto its image, the rest the
follows from the inverse function theorem (for surfaces). To see X is one-to-one,
suppose X (u,v) = X(u/,v"). Then, the z-component gives u = wu’. The first
two components together with the restriction v,v" € (0,27) then implies that
v = v’ as well. Therefore, X is injective. This proves the assertion that X is a
parametrization of S.

Compute the mean curvature H and Gauss curvature K of S (with respect to the
unit normal N that points “into” the cone).

Solution: Taking second derivatives of X, we obtain
Xuw = (0,0,0), Xy = Xpu = (—sinv,cosv,0) and X, = (—ucosv, —usinwv,0).

The unit normal is obtained by

X X X, 1

Nzizi
[ X X Xy V2

(—cosv,—sinw, 1),



which points into the cone. Therefore, the first fundamental form and its inverse
are given by
" <Xv7 Xu> <Xv7 Xv> 0u?)’
1
- B Ly
(97)=(9:5) " = (2 1)

On the other hand, the second fundamental formula is
3=\ (X N) (Xoun M) 025 ]
Applying the local formula for H and K, we have

H = tr((g7)(Ay)) = tr (8 ;;) - \/1§u
_ det(Ay)

= 0.
det(gij)



