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Solutions to Midterm

Q1. Let α : (−1, 1)→ R3 be the space curve given by

α(s) =

(
1

3
(1 + s)3/2,

1

3
(1− s)3/2, 1√

2
s

)
.

(a) Show that the curve α(s) is parametrized by arc length.

Solution: Differentiating α(s) w.r.t. s, we have

α′(s) =

(
1

2
(1 + s)1/2,−1

2
(1− s)1/2, 1√

2

)
.

Therefore, the length is

‖α′(s)‖ =

√
1

4
(1 + s) +

1

4
(1− s) +

1

2
= 1.

Hence, α is parametrized by arc length.

(b) Compute the curvature k(s) and torsion τ(s) of the curve α(s).

Solution: Since α is p.b.a.l., we have the unit tangent vector

T (s) = α′(s) =

(
1

2
(1 + s)1/2,−1

2
(1− s)1/2, 1√

2

)
.

Differentiating once w.r.t. s, we obtain

T ′(s) =

(
1

4
(1 + s)−1/2,

1

4
(1− s)−1/2, 0

)
.

Therefore, the curvature is

k(s) = ‖T ′(s)‖ =

√
1

16
(1 + s)−1 +

1

16
(1− s)−1 =

1

2
√

2
√

1− s2
.

Note that k(s) > 0 for all s ∈ (−1, 1). The unit normal is

N(s) =
1

k(s)
T ′(s) =

(
1√
2

(1− s)1/2, 1√
2

(1 + s)1/2, 0

)
.

The binormal is then given by

B(s) = T (s)×N(s) =

(
−1

2
(1 + s)1/2,

1

2
(1− s)1/2, 1√

2

)
.

Differentiating w.r.t. s,

B′(s) =

(
−1

4
(1 + s)−1/2,−1

4
(1− s)−1/2, 0

)
.

Therefore, the torsion is given by

τ(s) = 〈B′(s), N(s)〉 = − 1

4
√

2

(√
1− s
1 + s

+

√
1 + s

1− s

)
= − 1

2
√

2
√

1− s2
.



Q2. Let α = α(s) : R→ R2 be a plane curve p.b.a.l. such that all the tangent lines of α pass
through a fixed point p0 ∈ R2. Show that α must be a straight line passing through
the point p0.

Solution: By assumption, there exists a smooth function f(s) : R→ R such that

α(s) + f(s)α′(s) ≡ p0 for all s ∈ R.

Differentiating the above identity w.r.t. s,

α′(s) + f ′(s)α′(s) + f(s)α′′(s) ≡ 0.

As α is p.b.a.l., T (s) = α′(s) and Frenet’s equation gives α′′(s) = T ′(s) = k(s)N(s).
Therefore, we have

(1 + f ′(s))T (s) + f(s)k(s)N(s) ≡ 0.

Since {T (s), N(s)} is an orthonormal basis at each s, we have

1 + f ′(s) ≡ 0 and f(s)k(s) ≡ 0.

The first equations implies that f(s) = −s + C for some constant C ∈ R. Plug it
into the second equation and by continuity of k(s) we must have k(s) ≡ 0. By the
fundamental theorem of plane curve, α(s) must be a straight line. Since the tangent
lines of a straight line agree the line itself, α(s) must also pass through the point p0.

Q3. Let α : I → R2 be a regular plane curve described in polar coordinates by r = r(θ), i.e.

α(θ) = (r(θ) cos θ, r(θ) sin θ), θ ∈ I.

(a) Show that for any [a, b] ⊂ I, Lb
a(α) =

∫ b
a

√
r(θ)2 + r′(θ)2 dθ.

Solution: Differentiating α(θ) w.r.t. θ, we have

α′(θ) =
(
r′(θ) cos θ − r(θ) sin θ, r′(θ) sin θ + r(θ) cos θ

)
.

Therefore, the length squared is given by

‖α′(θ)‖2 = (r′(θ) cos θ − r(θ) sin θ)2 + (r′(θ) sin θ + r(θ) cos θ)2

= r′(θ)2 + r(θ)2.

By definition of arc length, we have

Lb
a(α) =

∫ b

a
‖α′(θ)‖ dθ ==

∫ b

a

√
r(θ)2 + r′(θ)2 dθ.

(b) Show that the curvature at θ ∈ I is given by

k(θ) =
2r′(θ)2 − r(θ)r′′(θ) + r(θ)2

[r′(θ)2 + r(θ)2]3/2
.

2



Hint: Recall that the curvature of a plane curve β(t) not necessarily parametrized
by arc length is given by the formula

k(t) =
det(β′(t), β′′(t))

|β′(t)|3
.

Solution: See Problem Set 2.

(c) Suppose there exists θ0 ∈ I such that r(θ0) ≥ r(θ) for all θ ∈ I. Prove that
k(θ0) ≥ 0.

Solution: Since θ0 is a maximal of the function r(θ), we have

r′(θ0) = 0 and r′′(θ0) ≤ 0.

Combining this with the result in (b), and that r(θ) ≥ 0 by definition of polar
coordinates, we have

k(θ0) =
r(θ0)

2 − r(θ0)r′′(θ0)
r(θ)3

≥ 0.

Q4. Let S ⊂ R3 be a surface and p0 ∈ S. Suppose a ∈ S2 is a unit vector perpendicular
to Tp0S and let P be the plane through p0 perpendicular to a. Define the function
f : S → R3 by

f(p) = p− 〈p− p0, a〉a.

(a) Show that f(S) ⊂ P and f : S → P is a smooth map between surfaces.

Solution: To check that f(S) ⊂ P , pick any p ∈ S, we want to show that
〈f(p) − p0, a〉 = 0, i.e. f(p) ∈ P = {q ∈ R3 : 〈q − p0, a〉 = 0}. Since a is a unit
vector,

〈f(p)− p0, a〉 = 〈p− p0, a〉 − 〈p− p0, a〉 = 0.

This proves f(S) ⊂ P . To see that f : S → P is a smooth map between surfaces,
we just observe that f is a well-defined smooth function for all p ∈ R3, hence its
restriction to S is a smooth map.

(b) Compute the differential dfp0 : Tp0S → Tp0P
∼= Tp0S.

Solution: Note that Tp0S = {v ∈ R3 : 〈v, a〉 = 0} = Tp0P . Take any v ∈ Tp0S,
there exists a smooth curve α(s) : (−ε, ε)→ S such that α(0) = p0 and α′(0) = v.
By the definition of differential, we have

dfp0(v) =
d

dt

∣∣∣∣
t=0

(
α(t)− 〈α(t)− p0, a〉a

)
= α′(0)− 〈α′(0), a〉a
= v − 〈v, a〉a
= v.

The last equality follows from the fact that v ⊥ a by the definition of Tp0S and a.
Therefore, dfp0 : Tp0S → Tp0P

∼= Tp0S is the identity map on Tp0S.
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(c) Prove that S is locally a graph over the plane P near p0.

Solution: Notice that f is the orthogonal projection onto the plane P . As dfp0
is the identity map on Tp0S, which is clearly a linear isomorphism, by Inverse
Function Theorem , f : S → P is a local diffeomorphism near p0. The inverse of
such a local diffeomorphism that gives S as a graph over P locally near p0.

Q5. Let S ⊂ R3 be the half-cone given by

S := {(x, y, z) ∈ R3 : x2 + y2 = z2, z > 0}.

(a) Show that S is a regular surface.

Solution:

Let F : R3 \ {z ≤ 0} → R be the smooth function defined by F (x, y, z) = x2 +
y2 − z2. Then we have

∇F (x, y, z) = (2x, 2y,−2z).

Note that ∇F = 0 only when (x, y, z) = 0, which does not lie on the surfaces S
(as z > 0). Therefore, we have S = F−1(0) is the level set of a regular value of F ,
hence must be a regular surface.

(b) Show thatX(u, v) = (u cos v, u sin v, u) where (u, v) ∈ (0,∞)×(0, 2π) is a parametriza-
tion of S.

Solution: Note first that (u cos v)2 + (u sin v)2 = u2, hence X(u, v) ∈ S for all
(u, v) ∈ (0,∞)× (0, 2π). It is clear that X is smooth. Moreover,

Xu = (cos v, sin v, 1) and Xv = (−u sin v, u cos v, 0),

which are linearly independent everywhere (for example, by comparing the z-
component). It remains to check that X is bijective onto its image, the rest the
follows from the inverse function theorem (for surfaces). To see X is one-to-one,
suppose X(u, v) = X(u′, v′). Then, the z-component gives u = u′. The first
two components together with the restriction v, v′ ∈ (0, 2π) then implies that
v = v′ as well. Therefore, X is injective. This proves the assertion that X is a
parametrization of S.

(c) Compute the mean curvature H and Gauss curvature K of S (with respect to the
unit normal N that points “into” the cone).

Solution: Taking second derivatives of X, we obtain

Xuu = (0, 0, 0), Xuv = Xvu = (− sin v, cos v, 0) and Xvv = (−u cos v,−u sin v, 0).

The unit normal is obtained by

N =
Xu ×Xv

‖Xu ×Xv‖
=

1√
2

(− cos v,− sin v, 1),
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which points into the cone. Therefore, the first fundamental form and its inverse
are given by

(gij) =

(
〈Xu, Xu〉 〈Xu, Xv〉
〈Xv, Xu〉 〈Xv, Xv〉

)
=

(
2 0
0 u2

)
,

(gij) = (gij)
−1 =

(
1
2 0
0 1

u2

)
.

On the other hand, the second fundamental formula is

(Aij) =

(
〈Xuu, N〉 〈Xuv, N〉
〈Xvu, N〉 〈Xvv, N〉

)
=

(
0 0
0 u√

2

)
.

Applying the local formula for H and K, we have

H = tr((gij)(Aij)) = tr

(
0 0
0 1√

2u

)
=

1√
2u
,

K =
det(Aij)

det(gij)
= 0.
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